Визуализация concurrency в Go с WebGL
Last updated
Was this helpful?
Last updated
Was this helpful?
Одной из самых сильных сторон языка программирования Go является встроенная поддержка concurrency, основанная на труде Тони Хоара . Go создан для удобной работы с многопоточным программированием и позволяет очень легко строить довольно сложные concurrent-программы. Но задумывались ли вы когда-нибудь, как выглядят различные паттерны concurrency визуально? Конечно, задумывались. Все мы, так или иначе, мыслим визуальными образами. Если я попрошу вас о чём-то, что включает числа «от 1 до 100», вы мгновенно их «увидите» в своей голове в той или иной форме, вероятно даже не отдавая себе в этом отчёт. Я, к примеру, ряд от 1 до 100 вижу как линия с числами уходящая от меня, поворачивающая на 90 градусов вправо на числе 20 и продолжающая до 1000+. И, покопавшись в памяти, я вспоминаю, что в самом первом детском саду в раздевалке вдоль стены были написаны номерки, и число 20 было как-раз в углу. У вас же, вероятно, какое-то свое представление. Или вот, другой частый пример — представьте круглый год и 4 сезона года — кто-то их видит как квадрат, каждая грань которого принадлежит сезону, кто-то — как круг, кто-то ещё как-то. Так или иначе, позвольте мне показать мою попытку визуализировать основные паттерны concurrency с помощью Go и WebGL. Эти интерактивные визуализации более-менее отражают то, как я вижу это в своей голове. Интересно будет услышать, насколько это отличается от визуализаций читателей. Итак, давайте начнем с простейшего примера — «Hello, concurrent world», чтобы познакомиться с концепцией моего подхода.
Привет, concurrent мир
Здесь синие линии представляют горутины, время «бежит» вниз по оси Y. Тонкие синие линии соединяющие 'main' и 'go #19' — это отметки начала и завершения жизни горутины, показывающие предков и детей. Красные стрелочки демонстрируют событие отправки сообщения в канал, и отправленное значение подписано. На самом деле, «отправка в канал» и «чтение из канала» это два отдельных события, и поведение будет сильно отличаться между буферизированными и небуферизированными каналами, но я два этих события анимирую как одно — «передача значения по каналу». Строка "#19" в названии анонимной горутины — это реальный ID запущенной горутины. Хотя официально узнать ID горутин и нельзя (чтобы люди не городили другие модели concurrency, в которых идентификаторы играют важную роль), но для вот таких хакерских случаев таки можно — об этом хорошо написано в статье Скота Мэнсфилда .
Таймеры
Фактически, наш простейший Hello, world выше может использоваться для создания простейшего таймера. В стандартной библиотеке Go есть такие удобные функции, как time.After или time.Tick, но давайте реализуем наш собственный — напишем функцию, которая создает канал, запускает горутину, которая спит необходимое время и пишет в канал, и возвратим этот канал вызывающему.
Пинг-понг
Fan-in
Один из самых известных паттернов это так называемый fan-in паттерн. Он является противоположностью паттерну fan-out, который мы рассмотрим далее. Если вкратце, то fan-in — это функция, читающая из нескольких источников и мультиплексирующая всё в один канал. К примеру:
Fan-out
Противоположностью fan-in является fan-out или workers паттерн. Множество горутин читают из одного канала, забирая на обработку какие-то данные и эффективно распределяя работу между ядрами CPU. Отсюда и название "workers". В Go реализовывать этот паттерн очень просто — запустите пачку горутин, передав канал через параметр и пишите в этот канал ваши данные, а мультиплексирование и распределение будет происходит автоматически благодаря рантайму Go.
Серверы
Следующий популярный паттерн, похожий на fan-out, это серверы. Он отличается тем, что горутины стартуют динамически, выполняют необходимую работу и завершаются. И довольно часто этот паттерн применяется для реализации серверов — слушаем порт, принимаем соединение, стартуем горутину, которая дальше займется входящим запросом, передав ей соединение, а в это время слушаем дальше, ожидая следующее соединение. Это достаточно удобно и позволяет реализовать эффективный сервер, выдерживающий 10K соединений, очень просто. Вгляните на следующий пример:
Сервер+Воркер
Пример сервера с воркером будет чуть более продвинутым вариантом только что озвученного решения. Он не только стартует логгер в нескольких горутинах, но и собирает с них данные с результатами (скажем, результат записи на удаленный сервис). Посмотрим на код и анимацию:
Решето Эратосфена
GOMAXPROCS
GOMAXPROCS устанавливает максимальное количество ядер CPU, которые могут исполнять код одновременно
Утечки горутин
Concurrency is not Parallelism
Параллелизм — это просто много штук, запущенных параллельно. Concurrency — это способ структурировать программу.
Ссылки:
Здорово, правда? Но идём дальше.
Этот интересный пример concurrency был взят из известного доклада гуглера Sameer Ajmani "". Конечно, этот пример не слишком advanced, но для тех, кто только знакомится с concurrency в Go он должен быть интересным и демонстративным. Итак, у нас есть канал table, выполняющий роль стола, есть мяч Ball, который является переменной типа int и хранит в себе количество ударов по нему, и есть горутины-игроки, которые «забирают мяч со стола» (читают из канала), «бьют по нему» (увеличивают переменную) и «бросают обратно на стол» (пишут в канал).
На этом моменте я хочу ещё раз обратить ваше внимание на , доступную под каждой анимацией — открыв в новом табе, вы можете двигать, вращать, увеличивать/уменьшать и рассматривать эти 3D анимации, как вам угодно, а так же замедлять/ускорять и перезапускать их. Теперь, давайте запустим три игрока-горутины, вместо двух:
В данном примере мы видим, что каждый игрок забирает мяч со стола по-очереди, и вы можете задаться вопросом — почему именно так, кто гарантирует этот порядок? Ответ тут прост — рантайм Go содержит для горутин, готовых читать из канала, поэтому мы и наблюдаем этот порядок. В нашем случае каждая горутина становится в очередь сразу же после отправки мяча на стол. Впрочем, это поведение может измениться в будущем и расчитывать на порядок не стоит. Но пока это так, и давайте запустим не три, а сто горутин.
Порядок FIFO теперь более очевиден, не так-ли? Мы можем запросто запустить и миллион горутин (они дешевые, и это ок в больших Go программах иметь сотни тысяч горутин), но для наших целей это будет слишком много. Давайте перейдем к другим паттернам.
Как мы видим, первый producer генерирует числа каждые 100мс, второй — каждые 250мс, а reader получает числа от обоих продюсеров сразу же. Мультиплексирование, по-сути, происходит в функции main.
Одна вещь, на которую тут хотелось бы обратить внимание — параллелизм. Лего заметить, что горутины-воркеры бегут параллельно, забирая себе «работу» по каналам, одна за другой. По данной анимации можно также увидеть, что горутины делают это почти одновременно. К сожалению, пока что в анимации не видно, где горутина реально работает, а где блокируется, и также тут временной масштаб уже близок к порогу погрешности ошибки, но конкретно эта анимация была записана на программе, бегущей на 4 ядрах, тоесть с GOMAXPROCS=4. Чуть дальше мы рассмотрим этот вопрос подробнее. А пока что, давайте попробуем что-то посложнее — воркеры, у которых есть свои, саб-воркеры.
Здорово. Конечно, можно было сделать больше и воркеров, и саб-воркеров, но я стремился сделать анимацию максимально наглядной. Есть гораздо более сложные паттерны, воркеров с сабворкерами со своими сабворкерами, и каналы, которые сами передаются по каналам, но идея fan-out должна быть понятна.
Этот пример не слишком интересен — по-сути, тут ничего особо не происходит. Хотя, конечно, под капотом там заботливо спрятана громадная сложность и алгоритмы. Но давайте добавим немного активности в наш сервер, и, скажем, добавим логгер, в который каждая горутина будет писать адрес клиента.
Достаточно демонстративно, не так ли? На этой анимации видно, что наш логгер может быстро стать узким местом, если количество соединений будет расти, а логгер будет не слишком быстрым (скажем, он будет сереализовать данные и куда-то еще отправлять). Но мы можем решить это, использовав уже знакомый нам паттерн fan-out. Давайте напишем это.
Мы улучшили наш сервер, эффективно распределив задачу для логгера между 4-мя горутинами, но всё равно видим, что логгер таки может стать узким местом. Тысячи соединений сходятся в одном канале. перед тем как мультиплексироваться между горутинами. Но, конечно, это случится уже при гораздо больших нагрузках, чем в предыдущем варианте.
Но довольно fan-in/fan-out экспериментов. Давайте посмотрим на более интересные пример. Один из моих любимых — это «Решето Эратосфена» на горутинах и каналах, найденное в докладе "". Решето Эратосфена это древний алгоритм нахождения простых чисел до заданного лимита. Его суть заключается в последовательном вычеркивании всех чисел, делящихся на каждое последующее найденное простое число. Алгоритм «в лоб» не слишком эффективен, особенно на мультиядерных машинах. Вариант реализации этого алгоритма с горутинами и каналами запускает по одной горутине на каждое найденное простое число, и эта горутина фильтрует числа, которые на него делятся. Когда же найдено первое простое число в горутине — оно отправляется в главную горутину(main) и выводится на экран. Этот алгоритм тоже далеко не самый эффективный, но я нахожу его потрясающе элегантным. Вот сам код:
А теперь взгляните на анимацию. Не забудьте покрутить его интерактивно в 3D пространстве по ссылке выше. Мне очень нравится, как иллюстративен этот пример и изучение его в 3D может помочь понять сам алгоритм лучше. Мы видим, что первая горутина(generate) посылает первое простое число (2) в main, затем стартует первая горутина-фильтр, отсеивающая двойки, затем тройки, пятерки, семерки… и каждый раз новое найденное простое число отправляется в main — это особенно хорошо видно при виде сверху. Красивый алгоритм, в том числе и в 3D.
Теперь давайте вернёмся к нашему примеру с воркерами. Помните, я написал, что этот пример был запущен с GOMAXPROCS=4? Это потому что все эти анимации не нарисованы, это реальные трейсы реальных программ. Для начала, давайте освежим память и вспомним, что такое :
Я изменил код воркеров слегка, чтобы они делали реальную работу. нагружая процессор, а не просто спали. Затем запустил код без каких либо изменений на Linux-машине с двумя процессорами по 12 ядер каждый — сначала с GOMAXPROCS=1, затем с GOMAXPROCS=24. Итак. первая анимация показывает одну и ту же программу, бегущую на 1-м ядре, вторая — на 24-х ядрах. Скорость анимации времени разная в этих примерах (я хотел, чтобы все анимации занимали фиксированное время по высоте), но разница должна быть очевидна. При GOMAXPROCS=1 следующий воркер забирает работу (читает из канала) только когда освободилось ядро процессора и предыдущая горутина отработала свою порцию. С 24-мя ядрами, горутины почти сразу же разбирают задачи и ускорение огромно. Впрочем, важно понимать, что увеличение GOMAXPROCS не всегда приводит к увеличению производительности, и могут быть случаи, когда она даже падает от увеличения количества ядер.
Что ещё мы можем продемонстрировать из мира concurrency? Одна из вещей, которая мне приходит в голову, это утечки горутин. Они могут случаться по неосторожности, или, скажем, если вы . Первый (и единственный) раз, когда я столкнулся с утечкой горутин, в моей голове возникла ужасающая картинка, и буквально на следующих выходных я написал для быстрого мониторинга. И сейчас я могу визуализировать эту ужасающую картинку с помощью WebGL. Посмотрите: Мне больно даже смотреть на это :) Каждая линия — это потраченные ресурсы компьютера и бомба с часовым механизмом для вашей программы.
Слово concurrency часто переводят как «параллелизм», но это не совсем верно. По правде, хорошего перевода я не знаю, поэтому везде тут и пишу без перевода. Но сама тема, объясняющая отличия между concurrency и параллелизмом , в том числе и Робом Пайком в замечательном . Посмотрите, если ещё не. Если вкратце, то:
Важно понимать, что эти концепции несколько ортогональны — concurrent-программа может быть параллельной, а может и не быть. Мы чуть выше видели пример этого с разными GOMAXPROCS — один и тот же код бежал как на 1-м ядре (последовательно), так и на 24-х ядрах (параллельно). Я мог бы повторять многие постулаты из вышеприведенных ссылок и докладов, но это уже сделано до меня. Лучше попробую показать это визуально. Итак, вот это параллелизм. Просто много штук, бегущих параллельно. И вот это параллелизм. Ещё больше параллельных штук, что, впрочем, ничего не меняет. Но вот это — concurrency: И вот это: И вот это тоже concurrency: